Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611866

RESUMO

α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.


Assuntos
Mel , Fenilenodiaminas , Óxido de Magnésio , Glioxal , Aldeído Pirúvico
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542311

RESUMO

Blast-induced neurotrauma (BINT) is a pressing concern for veterans and civilians exposed to explosive devices. Affected personnel may have increased risk for long-term cognitive decline and developing tauopathies including Alzheimer's disease-related disorders (ADRD) or frontal-temporal dementia (FTD). The goal of this study was to identify the effect of BINT on molecular networks and their modulation by mutant tau in transgenic (Tg) mice overexpressing the human tau P301L mutation (rTg4510) linked to FTD or non-carriers. The primary focus was on the phosphoproteome because of the prominent role of hyperphosphorylation in neurological disorders. Discrimination learning was assessed following injury in the subsequent 6 weeks, using the automated home-cage monitoring CognitionWall platform. At 40 days post injury, label-free phosphoproteomics was used to evaluate molecular networks in the frontal cortex of mice. Utilizing a weighted peptide co-expression network analysis (WpCNA) approach, we identified phosphopeptide networks tied to associative learning and mossy-fiber pathways and those which predicted learning outcomes. Phosphorylation levels in these networks were inversely related to learning and linked to synaptic dysfunction, cognitive decline, and dementia including Atp6v1a and Itsn1. Low-intensity blast (LIB) selectively increased pSer262tau in rTg4510, a site implicated in initiating tauopathy. Additionally, individual and group level analyses identified the Arhgap33 phosphopeptide as an indicator of BINT-induced cognitive impairment predominantly in rTg4510 mice. This study unveils novel interactions between ADRD genetic susceptibility, BINT, and cognitive decline, thus identifying dysregulated pathways as targets in potential precision-medicine focused therapeutics to alleviate the disease burden among those affected by BINT.


Assuntos
Demência Frontotemporal , Tauopatias , Camundongos , Humanos , Animais , Proteínas tau/genética , Proteínas tau/metabolismo , Demência Frontotemporal/genética , Fosfopeptídeos , Tauopatias/metabolismo , Camundongos Transgênicos , Cognição , Modelos Animais de Doenças
3.
Acta Neuropathol Commun ; 11(1): 144, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674234

RESUMO

Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas , Animais , Camundongos , Proteômica , Arvicolinae , Membrana Basal
4.
Biomolecules ; 13(7)2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37509132

RESUMO

BACKGROUND: A large number of individual potentially modifiable factors are associated with risk for Alzheimer's disease (AD). However, less is known about the interactions between the individual factors. METHODS: In order to begin to examine the relationship between a pair of factors, we performed a pilot study, surveying patients with AD and controls for stress exposure and dietary omega-3 fatty acid intake to explore their relationship for risk of AD. RESULTS: For individuals with the greatest stress exposure, omega-3 fatty acid intake was significantly greater in healthy controls than in AD patients. There was no difference among those with low stress exposure. CONCLUSIONS: These initial results begin to suggest that omega-3 fatty acids may mitigate AD risk in the setting of greater stress exposure. This will need to be examined with larger populations and other pairs of risk factors to better understand these important relationships. Examining how individual risk factors interact will ultimately be important for learning how to optimally decrease the risk of AD.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/complicações , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Projetos Piloto , Ácidos Graxos Ômega-3/farmacologia , Dieta , Ácidos Graxos
5.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446673

RESUMO

The presence of phenolic compounds in honey can serve as potential authenticity markers for honey's botanical or geographical origins. The composition and properties of honey can vary greatly depending on the floral and geographical origins. This study focuses on identifying the specific markers that can distinguish honey based on their geographical areas in the United States. The main approach presented in this study to identify the geographic origins of honey involves chemometric methods combined with phenolic compound fingerprinting. Sample clean-up and phenolic compound extraction was carried out using solid phase extraction (SPE). Reversed phase liquid chromatography in combination with tandem mass spectrometry were utilized for the separation of the compounds. The honey physicochemical qualities were predominantly determined via spectrophotometric methods. Multivariate statistical tools such as principal component analysis (PCA), analysis of variance (ANOVA), and partial-least squares discriminant analysis (PLS-DA) were employed as both classification and feature selection tools. Overall, the present study was able to identify the presence of 12 potential markers to differentiate the honey's geographical origins. The total phenolic content ranged from 81.6 to 105.7 mg GAE/100 g corresponding to honey from Colorado and Washington, respectively (GAE: gallic acid equivalents). The regression analysis shows a tendency for the total phenolic content of honey to increase as the color of honey increases. The most important result obtained in this study is the demonstration that the geographical origin of honey plays a critical role in predicting the physical properties and phenolic composition of honey.


Assuntos
Mel , Polifenóis , Estados Unidos , Polifenóis/análise , Mel/análise , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Fenóis/análise
6.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770587

RESUMO

Adulteration of food products is a widespread problem of great concern to society and dairy products are no exception to this. Due to new methods of adulteration being devised in order to circumvent existing detection methods, new detection methods must be developed to counter fraud. Bovine hard cheeses such as Asiago, Parmesan, and Romano are widely sold and consumed in pre-grated form for convenience. Due to being processed products, there is ample opportunity for the introduction of inexpensive adulterants and as such, there is concern regarding the authenticity of these products. An analytical method was developed using a simple organic extraction to verify the authenticity of bovine hard cheese products by examining the lipid profile of these cheeses via proton Nuclear Magnetic Resonance (NMR) spectroscopy. In this study, 52 samples of pre-grated hard cheese were analyzed as a market survey and a significant number of these samples were found to be adulterated with vegetable oils. This method is well suited to high throughput analysis of these products and relies on ratiometrics of the lipids in the samples themselves. Genuine cheeses were found to have a very consistent lipid profile from sample to sample, improving the power of this approach to detect vegetable oil adulteration. The method is purely ratiometric with no need for internal or external references, reducing sample preparation time and reducing the potential for the introduction of error.


Assuntos
Queijo , Óleos de Plantas , Animais , Bovinos , Óleos de Plantas/análise , Queijo/análise , Laticínios/análise , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética , Contaminação de Alimentos/análise
7.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296514

RESUMO

Due to increased concerns regarding unidentified impurities in delta-8 tetrahydrocannabinol (Δ-8 THC) consumer products, a study using Nuclear Magnetic Resonance (NMR), high performance liquid chromatography (HPLC), and mass spectrometry (MS) was conducted to further investigate these products. Ten Δ-8 THC products, including distillates and ready to use vaporizer cartridges, were analyzed. The results yield findings that the tested products contain several impurities in concentrations far beyond what is declared on certificates of analysis for these products. As Δ-8 THC is a synthetic product synthesized from cannabidiol (CBD), there are valid concerns regarding the presence of impurities in these products with unknown effects on the human body. Compounding this problem is apparent inadequate testing of these products by producers and independent laboratories.


Assuntos
Canabidiol , Cannabis , Humanos , Canabidiol/análise , Dronabinol/análise , Cannabis/química , Cromatografia Líquida de Alta Pressão/métodos , Imageamento por Ressonância Magnética
8.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233016

RESUMO

Bottom-up mass-spectrometry-based proteomics is a well-developed technology based on complex peptide mixtures from proteolytic cleavage of proteins and is widely applied in protein identification, characterization, and quantitation. A tims-ToF mass spectrometer is an excellent platform for bottom-up proteomics studies due to its rapid acquisition with high sensitivity. It remains challenging for bottom-up proteomics approaches to achieve 100% proteome coverage. Liquid chromatography (LC) is commonly used prior to mass spectrometry (MS) analysis to fractionate peptide mixtures, and the LC gradient can affect the peptide fractionation and proteome coverage. We investigated the effects of gradient type and time duration to find optimal gradient conditions. Five gradient types (linear, logarithm-like, exponent-like, stepwise, and step-linear), three different gradient lengths (22 min, 44 min, and 66 min), two sample loading amounts (100 ng and 200 ng), and two loading conditions (the use of trap column and no trap column) were studied. The effect of these chromatography variables on protein groups, peptides, and spectral counts using HeLa cell digests was explored. The results indicate that (1) a step-linear gradient performs best among the five gradient types studied; (2) the optimal gradient duration depends on protein sample loading amount; (3) the use of a trap column helps to enhance protein identification, especially low-abundance proteins; (4) MSFragger and PEAKS Studio have high similarity in protein group identification; (5) MSFragger identified more protein groups among the different gradient conditions compared to PEAKS Studio; and (6) combining results from both database search engines can expand identified protein groups by 9-11%.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Misturas Complexas , Células HeLa , Humanos , Peptídeos/análise , Proteoma/análise , Espectrometria de Massas em Tandem/métodos
9.
Water Res ; 221: 118824, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830746

RESUMO

Recent SARS-CoV-2 wastewater-based epidemiology (WBE) surveillance have documented a positive correlation between the number of COVID-19 patients in a sewershed and the level of viral genetic material in the wastewater. Efforts have been made to use the wastewater SARS-CoV-2 viral load to predict the infected population within each sewershed using a multivariable regression approach. However, reported clear and sustained variability in SARS-CoV-2 viral load among treatment facilities receiving industrial wastewater have made clinical prediction challenging. Several classes of molecules released by regional industries and manufacturing facilities, particularly the food processing industry, can significantly suppress the SARS-CoV-2 signals in wastewater by breaking down the lipid-bilayer of the membranes. Therefore, a systematic ranking process in conjugation with metabolomic analysis was developed to identify the wastewater treatment facilities exhibiting SARS-CoV-2 suppression and identify and quantify the chemicals suppressing the SARS-COV-2 signals. By ranking the viral load per diagnosed case among the sewersheds, we successfully identified the wastewater treatment facilities in Missouri, USA that exhibit SARS-CoV-2 suppression (significantly lower than 5 × 1011 gene copies/reported case) and determined their suppression rates. Through both untargeted global chemical profiling and targeted analysis of wastewater samples, 40 compounds were identified as candidates of SARS-CoV-2 signal suppressors. Among these compounds, 14 had higher concentrations in wastewater treatment facilities that exhibited SARS-CoV-2 signal suppression compared to the unsuppressed control facilities. Stepwise regression analyses indicated that 4-nonylphenol, palmitelaidic acid, sodium oleate, and polyethylene glycol dioleate are positively correlated with SARS-CoV-2 signal suppression rates. Suppression activities were further confirmed by incubation studies, and the suppression kinetics for each bioactive compound were determined. According to the results of these experiments, bioactive molecules in wastewater can significantly reduce the stability of SARS-CoV-2 genetic marker signals. Based on the concentrations of these chemical suppressors, a correction factor could be developed to achieve more reliable and unbiased surveillance results for wastewater treatment facilities that receive wastewater from similar industries.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
10.
Neurobiol Dis ; 165: 105634, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077822

RESUMO

Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of "invisible injury." However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries.


Assuntos
Traumatismos por Explosões , Proteômica , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/metabolismo , Hipocampo/metabolismo , Camundongos , Plasticidade Neuronal , Inibidores de Serino Proteinase/metabolismo
11.
Cells ; 10(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34831185

RESUMO

Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.


Assuntos
Doenças do Sistema Nervoso Central/enzimologia , Doenças do Sistema Nervoso Central/patologia , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Fosfolipases A2 Secretórias/metabolismo , Vesículas Extracelulares/enzimologia , Humanos , Peroxidação de Lipídeos , Lipidômica , Fosfolipases A2 Secretórias/química
12.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806603

RESUMO

Cyanogenic glycosides (CNGs) are naturally occurring plant molecules (nitrogenous plant secondary metabolites) which consist of an aglycone and a sugar moiety. Hydrogen cyanide (HCN) is released from these compounds following enzymatic hydrolysis causing potential toxicity issues. The presence of CNGs in American elderberry (AE) fruit, Sambucus nigra (subsp. canadensis), is uncertain. A sensitive, reproducible and robust LC-MS/MS method was developed and optimized for accurate identification and quantification of the intact glycoside. A complimentary picrate paper test method was modified to determine the total cyanogenic potential (TCP). TCP analysis was performed using a camera-phone and UV-Vis spectrophotometry. A method validation was conducted and the developed methods were successfully applied to the assessment of TCP and quantification of intact CNGs in different tissues of AE samples. Results showed no quantifiable trace of CNGs in commercial AE juice. Levels of CNGs found in various fruit tissues of AE cultivars studied ranged from between 0.12 and 6.38 µg/g. In pressed juice samples, the concentration range measured was 0.29-2.36 µg/mL and in seeds the levels were 0.12-2.38 µg/g. TCP was highest in the stems and green berries. Concentration levels in all tissues were generally low and at a level that poses no threat to consumers of fresh and processed AE products.


Assuntos
Cromatografia Líquida/métodos , Frutas/química , Glicosídeos/análise , Sambucus/química , Espectrometria de Massas em Tandem/métodos
13.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011445

RESUMO

A new NMR-based method for the discrimination of olive oils of any grade from seed oils and mixtures thereof was developed with the aim of allowing the verification of olive oil authenticity. Ten seed oils and seven monovarietal and blended extra virgin olive oils were utilized to develop a principal component analysis (PCA) based analysis of 1H NMR spectra to rapidly and accurately determine the authenticity of olive oils. Another twenty-eight olive oils were utilized to test the principal component analysis (PCA) based analysis. Detection of seed oil adulteration levels as low as 5% v/v has been shown using simple one-dimensional proton spectra obtained using a 400 MHz NMR spectrometer equipped with a room temperature inverse probe. The combination of simple sample preparation, rapid sample analysis, novel processing parameters, and easily interpreted results, makes this method an easily accessible tool for olive oil fraud detection by substitution or dilution compared to other methods already published.


Assuntos
Azeite de Oliva/análise , Azeite de Oliva/química , Espectroscopia de Prótons por Ressonância Magnética , Análise de Alimentos , Contaminação de Alimentos/análise , Qualidade dos Alimentos , Estrutura Molecular , Análise Multivariada , Óleos de Plantas/análise , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética/métodos
14.
Neuromolecular Med ; 23(1): 118-129, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32926329

RESUMO

The abundance of docosahexaenoic acid (DHA) in phospholipids in the brain and retina has generated interest to search for its role in mediating neurological functions. Besides the source of many oxylipins with pro-resolving properties, DHA also undergoes peroxidation, producing 4-hydroxyhexenal (4-HHE), although its function remains elusive. Despite wide dietary consumption, whether supplementation of DHA may alter the peroxidation products and their relationship to phospholipid species in brain and other body organs have not been explored sufficiently. In this study, adult mice were administered a control or DHA-enriched diet for 3 weeks, and phospholipid species and peroxidation products were examined in brain, heart, and plasma. Results demonstrated that this dietary regimen increased (n-3) and decreased (n-6) species to different extent in all major phospholipid classes (PC, dPE, PE-pl, PI and PS) examined. Besides changes in phospholipid species, DHA-enriched diet also showed substantial increases in 4-HHE in brain, heart, and plasma. Among different brain regions, the hippocampus responded to the DHA-enriched diet showing significant increase in 4-HHE. Considering the pro- and anti-inflammatory pathways mediated by the (n-6) and (n-3) polyunsaturated fatty acids, unveiling the ability for DHA-enriched diet to alter phospholipid species and lipid peroxidation products in the brain and in different body organs may be an important step forward towards understanding the mechanism(s) for this (n-3) fatty acid on health and diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Coração/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Miocárdio/metabolismo , Fosfolipídeos/metabolismo , Aldeídos/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Oxirredução , Fosfolipídeos/análise , Plasma , Distribuição Aleatória , Espectrometria de Massas em Tandem
15.
J Proteome Res ; 19(6): 2236-2246, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302149

RESUMO

The high levels of docosahexaenoic acid (DHA) in cell membranes within the brain have led to a number of studies exploring its function. These studies have shown that DHA can reduce inflammatory responses in microglial cells. However, the method of action is poorly understood. Here, we report the effects of DHA on microglial cells stimulated with lipopolysaccharides (LPSs). Data were acquired using the parallel accumulation serial fragmentation method in a hybrid trapped ion mobility-quadrupole time-of-flight mass spectrometer. Over 2800 proteins are identified using label-free quantitative proteomics. Cells exposed to LPSs and/or DHA resulted in changes in cell morphology and expression of 49 proteins with differential abundance (greater than 1.5-fold change). The data provide details about pathways that are influenced in this system including the nuclear factor κ-light-chain-enhancer of the activated B cells (NF-κB) pathway. Western blots and enzyme-linked immunosorbent assay studies are used to help confirm the proteomic results. The MS data are available at ProteomeXchange.


Assuntos
Lipopolissacarídeos , Fármacos Neuroprotetores , Citocinas , Ácidos Docosa-Hexaenoicos/farmacologia , Lipopolissacarídeos/farmacologia , Microglia , NF-kappa B/genética , Proteômica
16.
Exp Ther Med ; 19(2): 1554-1559, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010338

RESUMO

Garlic (Allium sativum) has been widely used for culinary and medicinal purposes. Aged garlic extract (AGE) and sulfur-containing compounds, including S-allylcysteine (SAC) are well documented botanical active components of garlic. AGE is prepared by the prolonged extraction of fresh garlic with aqueous ethanol and is considered a nutritional supplement with potential to promote human health. SAC is a water-soluble organosulfur compound and the most abundant component of AGE. Studies have demonstrated that both AGE and SAC can exert neuroprotective effects against neuroinflammation and neurodegeneration. Another bioactive component in AGE is N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg) although less is known about the metabolic activity of this compound. The main aim of this review was to provide an undated overview of the neuroprotective perspectives of these active garlic components (AGE, SAC and FruArg). Of interest, our studies and those of others indicate that both AGE and FruArg are involved in the regulation of gene transcription and protein expression. AGE has been shown to reverse 67% of the transcriptome alteration induced by endotoxins-lipopolysaccharide (LPS), and FruArg has been shown to account for the protective effects by reversing 55% of genes altered in a cell-based neuroinflammation paradigm stimulated by LPS in murine BV-2 microglial cells. AGE and FruArg can alleviate neuroinflammatory responses through a variety of signaling pathways, such as Toll-like receptor and interleukin (IL)-6 signaling, as well as by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress pathways known to promote microglial resiliency against neuroinflammation and neurodegeneration. The capability of FruArg to pass through the blood-brain barrier further supports its potential as a therapeutic compound. In summary, these experimental results provide new insight into the understanding of the neuroprotective effects of garlic components in promoting brain resiliency for health benefits.

17.
Neuromolecular Med ; 22(2): 278-292, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31900786

RESUMO

Spinal cord injury (SCI) is a deliberating disorder with impairments in locomotor deficits and incapacitating sensory abnormalities. Harpagophytum procumbens (Hp) is a botanical widely used for treating inflammation and pain related to various inflammatory and musculoskeletal conditions. Using a modified rodent contusion model of SCI, we explored the effects of this botanical on locomotor function and responses to mechanical stimuli, and examined possible neurochemical changes associated with SCI-induced allodynia. Following spinal cord contusion at T10 level, Hp (300 mg/kg, p.o.) or vehicle (water) was administered daily starting 24 h post-surgery, and behavioral measurements made every-other day until sacrifice (Day 21). Hp treatment markedly ameliorated the contusion-induced decrease in locomotor function and increased sensitivity to mechanical stimuli. Determination of Iba1 expression in spinal cord tissues indicated microglial infiltration starting 3 days post-injury. SCI results in increased levels of 4-hydroxynonenal, an oxidative stress product and proalgesic, which was diminished at 7 days by treatment with Hp. SCI also enhanced antioxidant heme oxygenase-1 (HO-1) expression. Concurrent studies of cultured murine BV-2 microglial cells revealed that Hp suppressed oxidative/nitrosative stress and inflammatory responses, including production of nitric oxide and reactive oxygen species, phosphorylation of cytosolic phospholipases A2, and upregulation of the antioxidative stress pathway involving the nuclear factor erythroid 2-related factor 2 and HO-1. These results support the use of Hp for management of allodynia by providing resilience against the neuroinflammation and pain associated with SCI and other neuropathological conditions.


Assuntos
Harpagophytum/química , Hiperalgesia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Traumatismos da Medula Espinal/complicações , Aldeídos/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/biossíntese , Heme Oxigenase (Desciclizante)/genética , Hiperalgesia/etiologia , Inflamação , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , Ácido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Método Simples-Cego , Tato
18.
Mol Neurobiol ; 57(2): 1085-1098, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31677009

RESUMO

Growing evidence suggests that docosahexaenoic acid (DHA) exerts neuroprotective effects, although the mechanism(s) underlying these beneficial effects are not fully understood. Here we demonstrate that DHA, but not arachidonic acid (ARA), suppressed oligomeric amyloid-ß peptide (oAß)-induced reactive oxygen species (ROS) production in primary mouse microglia and immortalized mouse microglia (BV2). Similarly, DHA but not ARA suppressed oAß-induced increases in phosphorylated cytosolic phospholipase A2 (p-cPLA2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) in BV2 cells. LC-MS/MS assay indicated the ability for DHA to cause an increase in 4-hydroxyhexenal (4-HHE) and suppress oAß-induced increase in 4-hydroxynonenal (4-HNE). Although oAß did not alter the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, exogenous DHA, ARA as well as low concentrations of 4-HHE and 4-HNE upregulated this pathway and increased production of heme oxygenase-1 (HO-1) in microglial cells. These results suggest that DHA modulates ARA metabolism in oAß-stimulated microglia through suppressing oxidative and inflammatory pathways and upregulating the antioxidative stress pathway involving Nrf2/HO-1. Understanding the mechanism(s) underlying the beneficial effects of DHA on microglia should shed light into nutraceutical therapy for the prevention and treatment of Alzheimer's disease (AD).


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espectrometria de Massas em Tandem/métodos
19.
Front Neurol ; 10: 642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275232

RESUMO

Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the "deacylation-reacylation (Land's) cycle". Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.

20.
Metabolites ; 9(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832208

RESUMO

The abundance of docosahexaenoic acid (DHA) in the mammalian brain has generated substantial interest in the search for its roles in regulating brain functions. Our recent study with a gene/stress mouse model provided evidence to support the ability for the maternal supplement of DHA to alleviate autism-associated behavior in the offspring. DHA and arachidonic acid (ARA) are substrates of enzymatic and non-enzymatic reactions, and lipid peroxidation results in the production of 4-hydroxyhexenal (4-HHE) and 4-hydroxynonenal (4-HNE), respectively. In this study, we examine whether a maternal DHA-supplemented diet alters fatty acids (FAs), as well as lipid peroxidation products in the pup brain, heart and plasma by a targeted metabolite approach. Pups in the maternal DHA-supplemented diet group showed an increase in DHA and a concomitant decrease in ARA in all brain regions examined. However, significant increases in 4-HHE, and not 4-HNE, were found mainly in the cerebral cortex and hippocampus. Analysis of heart and plasma showed large increases in DHA and 4-HHE, but a significant decrease in 4-HNE levels only in plasma. Taken together, the DHA-supplemented maternal diet alters the (n-3)/(n-6) FA ratio, and increases 4-HHE levels in pup brain, heart and plasma. These effects may contribute to the beneficial effects of DHA on neurodevelopment, as well as functional changes in other body organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...